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Abstract
We propose HifiHead, a high fidelity neural talk-
ing head synthesis method, which can well pre-
serve the source image’s appearance and control
the motion (e.g., pose, expression, gaze) flexibly
with 3D morphable face models (3DMMs) param-
eters derived from a driving image or indicated by
users. Existing head synthesis works mainly fo-
cus on low-resolution inputs. Instead, we exploit
the powerful generative prior embedded in Style-
GAN to achieve high-quality head synthesis and
editing. Specifically, we first extract the source
image’s appearance and driving image’s motion to
construct 3D face descriptors, which are employed
as latent style codes for the generator. Meanwhile,
hierarchical representations are extracted from the
source and rendered 3D images respectively to pro-
vide faithful appearance and shape guidance. Con-
sidering the appearance representations need high-
resolution flow fields for spatial transform, we pro-
pose a coarse-to-fine style-based generator consist-
ing of several feature alignment and refinement
(FAR) blocks. Each FAR block updates the dense
flow fields and refines RGB outputs simultaneously
for efficiency. Extensive experiments show that our
method blends source appearance and target mo-
tion more accurately along with more realistic re-
sults than previous state-of-the-art approaches.

1 Introduction
Neural talking head synthesis generates images with the
appearance including identity, texture and lighting from a
source face and the motion (e.g., pose, expression, gaze) from
a driving image, which has attracted considerable interest due
to great potential usage in computer games and film industry.

Existing methods mainly focus on neural head synthesis
for 2562 resolution inputs and leverage generative adversarial
networks (GAN) with conditions such as facial boundary [Wu
et al., 2018], keypoints [Siarohin et al., 2019b] or 3D mor-
phable face models (3DMM) parameters [Ren et al., 2021].

* Ying Tai and Chengjie Wang are corresponding authors. https:
//github.com/TencentYoutuResearch/HeadSynthesis-HifiHead

Recent approaches typically follow a paradigm of flow pre-
diction, warping and refinement. For example, [Siarohin et
al., 2019b; Siarohin et al., 2019a] first perform keypoint de-
tection on the driving image and then generate dense flow
fields from sparse keypoints. After that, the source image is
warped and further fed into a generator network for refine-
ment. However, such approaches are not applicable for high
resolution scenarios since it is very challenging to directly
predict accurate 5122 flow fields or synthesize high-quality
images with common generator architecture.

Recently, StyleRig [Tewari et al., 2020b] and PIE [Tewari
et al., 2020a] have been investigated to manipulate the la-
tent style codes of StyleGAN [Karras et al., 2019] to achieve
high fidelity image editing. Unfortunately, the results are not
faithful to the desired expression or posture, and could not
preserve high fidelity source appearance due to the limited
capacity of latent codes.

To overcome the above defects, we propose an elegant one-
stage framework, termed HifiHead, to generate high fidelity
talking heads via 3D face representations and generative prior
embedded in StyleGAN. First, we combine the appearance-
related 3DMM coefficients from the source image with the
motion-related coefficients from the driving image to con-
struct 3D face descriptors, which play the role of latent codes
in StyleGAN. To better preserve texture details and rich spa-
tial information, we further extract hierarchical representa-
tions from the source and rendered 3D images respectively to
provide accurate appearance and shape guidance.

Next, we introduce a coarse-to-fine style-based generator
to fuse the appearance and shape representations along with
the latent codes to render a photo-realistic output. The latent
codes are broadcasted to all generator blocks to modulate the
convolutional weights. The hierarchical representations are
injected into the generator through spatial concatenation pro-
gressively. Considering the appearance representations need
high-resolution flow fields for spatial warping, we introduce
feature alignment and refinement (FAR) blocks to better ex-
ploit the facial texture and geometry details. Different from
existing works splitting the flow estimation and feature refine-
ment into two stages, the FAR block utilizes the appearance
and shape features as input, generating dense flow fields and
refined features simultaneously for efficiency. Note the dense
flow fields are not only leveraged to warp the appearance fea-
tures in the next module, but also serve as the base estimates

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

1750

https://github.com/TencentYoutuResearch/HeadSynthesis-HifiHead
https://github.com/TencentYoutuResearch/HeadSynthesis-HifiHead


Src & Drive NTHS [Wang et al., 2021a] PIRenderer [Ren et al., 2021] HifiHead (Ours)

Figure 1: Comparison with state-of-the-art methods. Our HiFiHead is able to generate realistic face details and accurate motion.

to alleviate higher resolution flow field learning in a residual
manner. Extensive experiments demonstrate our results sur-
pass other state-of-the-art neural head synthesis methods on
wild face images with extreme pose, expression, or illumina-
tion. Our contributions are summarized as follows:

1. High-precise: We incorporate 3DMM parameters and
3D rendered images to provide strong motion constraint
for head driven. The FAR block estimates accurate opti-
cal flow for better modeling the motion, preserving bet-
ter facial textures and identity in the final results.

2. High-resolution: Benefiting from the StyleGAN-based
generative architecture, HifiHead easily deals with faces
with 512×512 resolution, higher than FOMM or PIRen-
der along with better source texture preservation.

3. Practical: Our HifiHead drives real-world talking heads
using only one source image. StyleRig cannot be applied
for real-world image editing directly, while Dynamic-
NeRF requires video sequence as training data for each
source person.

2 Related Work
2D-based Head Synthesis. A large number of 2D-based
approaches [Zakharov et al., 2019; Ha et al., 2020; Zakharov
et al., 2020] have been proposed to control head poses and fa-
cial expressions with conditional generative adversarial net-
works. ReenactGAN [Wu et al., 2018] feeds an adapted
facial boundary into a target-specific decoder for generat-
ing the reenacted target face. X2face [Wiles et al., 2018]
first generates a frontalised source face given an image set
and then further transforms it to ensure desired pose and ex-
pression. However, requiring specific decoders [Wu et al.,
2018] or an image set [Wiles et al., 2018] is not convenient
in real-world applications and thus one shot head synthesis
has drawn much attention [Siarohin et al., 2019b; Yao et
al., 2021] recently. Several attempts [Siarohin et al., 2019a;
Siarohin et al., 2021] generate dense flow fields from sparse
keypoints detected from the driving image. After that, the
input image is warped and refined to produce animated re-
sults. Unfortunately, synthesizing with a single source image
is challenging especially for extreme poses and expressions.

3D Model-based Head Synthesis. 3D morphable mod-
els provide disentangled representations in respect of iden-
tity, shape, and texture of facial images, serving as plau-
sible priors in many head synthesis algorithms [Ren et al.,
2021; Wang et al., 2021b]. PIRenderer [Ren et al., 2021]
and HeadGAN [Doukas et al., 2021] both utilize 3D face
representations to compute dense flow fields for spatially
transforming the source image and then generate a photo-
realistic output. Instead of using an explicit 3D graphics
model, [Wang et al., 2021a] represents motion information
with a 3D keypoint representation and warps source image
feature in 3D space to handle extreme poses and expressions.
However, these methods are mainly designed for 2562 reso-
lution and could not preserve detailed facial appearance.

StyleGAN-based Head Synthesis. In recent years, style-
based generators [Karras et al., 2019] have greatly boost
the performance of high-quality image generation and ap-
plied in a large variety of applications, including face restora-
tion [Yang et al., 2021] and portrait attribute editing [Chu et
al., 2020]. StyleRig [Tewari et al., 2020b] trains a transla-
tion network between the 3DMM’s semantic parameters and
StyleGAN’s latent codes, thus can control over face pose and
expressions of synthetically created StyleGAN images effec-
tively. Furthermore, PIE [Tewari et al., 2020a] embeds real
portrait images in the latent space of StyleGAN for intuitive
editing. However, due to the limited capacity of latent codes
and lack of finetune, the results are unfaithful to source im-
age’s appearance. In contrast, our HifiHead generates high-
resolution dense flow fields to transform the hierarchical rep-
resentations of the source image and produces satisfactory re-
sults confirming to desired appearance, pose and expression.

3 Methodology
The overall architecture of HifiHead is depicted in Figure 2a.
Given a source image Is and a driving image Id, the proposed
HifiHead can transfer the expressions, pose and gaze of Id to
the source person while preserving the appearance attributes
of Is, such as identity, lighting and textures. In this section,
we firstly introduce the 3D face descriptors. Then, we illus-
trate the modules of HifiHead in detail. Finally, we present
the model objectives used to train our network.
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Figure 2: The overall architecture of our method.

3.1 3D Face Descriptors
Following the practice of D3DFR [Deng et al., 2019b], we
leverage a deep neural network (ResNet50) to predict 3DMM
coefficients from the input images:

z = FRes50(I). (1)

The output is a vector z = (α,β, δ,γ,p, τ ) ∈ R261, where
α ∈ R80,β ∈ R64, δ ∈ R80,γ ∈ R27,p ∈ R6 and
τ ∈ R4 represent the coefficients of the identity, expression,
texture, illumination, pose and gaze. The original 3DMM can
not control gaze directions. We add gaze coefficient which
is defined as the normalized direction vector from the cen-
ter of the eye to the pupil. The desired synthesized result
should maintain the appearance related attributes of Is while
having the motion related attributes of Id. Therefore, the
3D face descriptors of the desired result are expressed by
zdes = {αs,βd, δs,γs,pd, τd}.

Next, we compute the 3D face shape S and the albedo tex-
ture T with 3DMM,

S = S(α,β) = S̄+Bidαs +Bexpβd, (2)

T = T(δ) = T̄+Btδs, (3)

where S̄ and T̄ denotes the mean face shape and albedo tex-
ture. Bid,Bexp and Bt are the bases of identity, expression
and texture. The reconstructed 3D face is further projected
onto the 2D image plane with a differentiable renderer ac-
cording to the predicted illumination γs and pose pd,

I3d = Frender(S,T,γs,pd). (4)

Please refer to [Deng et al., 2019b] for more details.
In summary, given a source image Is and a driving image

Id, the 3D face descriptors of the desired result is defined
as zdes = {αs,βd, δs,γs,pd, τd}. The 3D face descriptors
together with the rendered 3D face image I3d are used to con-
dition the image generation.

3.2 HifiHead Generative Network
We carefully modify the StyleGAN2 generative architecture
for effective neural head synthesis and editing.

Input. As shown in Figure 2a, the 3D face descriptors are
mapped to the latent space w ∈ W of StyleGAN2,

w = Fmlp(zdes). (5)

The mapping network depth is 3 as [Karras et al., 2021]. In
order to produce faithful appearance of the source identity,
we condition the generative model on the multi-scale spatial
features extracted from the source image Is. Besides, we also
extract spatial features from I3D to provide target motion in-
formation in addition to the 3D face descriptors,

F i
s = Fs

enc(Is), (6)

F i
3D = F3D

enc(I3D). (7)

The original StyleGAN2 requires noise inputs in each block.
Instead, we replace that with spatial features F i

src and F i
3d.

Architecture. Directly concatenating F i
src and F i

3d is not
reasonable since the expression and pose are mismatched spa-
tially. It has been proven more effective to align the source
image with the desired pose and expression through spa-
tial deformations [Ren et al., 2021]. Different from existing
works [Ren et al., 2021; Doukas et al., 2021] which both train
a warping network and a refine network separately in two
stages, HifiHead network estimates the spatial deformations
and generates the final result simultaneously in one single
stage. With this in mind, we modify the original StyleGAN2
generative block such that each block has two output layers.
The tRGB layer and tXY layer convert the high-dimensional
features to RGB output and dense flow, respectively. The de-
tailed structure will be illustrated in the next section.

To summarize, the HifiHead full generative network G
contains the following trainable parts, the spatial feature en-
coder Fs

enc and F3D
enc, the mapping network Fmlp and the

generative blocks Fgen. Given the source image Is, the 3D
face descriptors zdes and the rendered 3D image I3D, the Hi-
fiHead network generates the dense flow prediction f̂ and im-
age prediction Î as follows,

f̂ , Î = G(Is, zdes, I3D). (8)
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Figure 3: Visualization of the predicted flow field f and source fea-
tures Fsrc at scale 256 and 512. The warped features F̄src align
better with the driving image.

3.3 Feature Alignment and Refinement Block
The detailed feature alignment and refinement (FAR) block
structure is illustrated in Figure 2b. The i-th FAR block takes
six inputs, including Ii, f i, F i

GAN , F i
s , F

i
3d and w. The RGB

output Ii, dense flow f i and the high-dimensional generative
features F i

GAN are generated by the previous block. F i
s and

F i
3d denote the corresponding spatial features extracted from

Is and I3d. w represents the latent code.
First, the source feature F i

src is warped to F̄ i
src according

to the predicted flow filed f i. As shown in Figure 3, we visu-
alize the predicted flow field at scale 256 and scale 512. The
warped source feature aligns better with the driving image.
Then, the generative feature FGAN is updated as follows:

F i
inter = StyleConv(F i

GAN |w), (9)

F i+1
GAN = Concat(F i

inter, F̄
i
src, F

i
3D), (10)

where the operation StyleConv denotes the style convolu-
tion in StyleGAN2. The definition of “Mod” and “Demod”
can be found in [Karras et al., 2020].

The RGB output I and dense flow f are updated with up-
sampling and skip connections. We use bilinear filtering in
all up operations. The updated RGB output and dense flow
are formulated as:

Ii+1 = tRGB(F i+1
GAN ) +UP(Ii), (11)

f i+1 = tXY(F i+1
GAN ) +UP(f i), (12)

where tRGB and tXY are both 1× 1 convolutional layers.

3.4 Model Objectives
Previous methods [Siarohin et al., 2019a; Wang et al., 2021a]
sample two frames from the same video, one as the source im-
age Is and the other as the driving image Id. Id also serves as
the ground truth (same-identity). We observe that their mo-
tion transfer performance deteriorates when the source and
driving images are different persons (cross-identity). How-
ever, cross-identity motion transfer has a wider range of prac-
tical applications. Motivated by this observation, our training
data is divided into two categories:

Same-identity Data. The widely-used L1 loss L1 and per-
ceptual loss Lp [Johnson et al., 2016] are adopted as our

FOMM NTHS PIRenderer Ours
Figure 4: Visual comparison of same-identity reconstruction. The
source and driving images are shown in the first column. Please
zoom in to better see the differences.

Method PSNR↑ LPIPS↓ Exp↓ Angle↓ Gaze↓ ID↑ FID↓

FOMM 23.25 0.1261 2.77 0.0232 0.0540 0.8521 50.00
NTHS 23.60 0.1103 2.80 0.0268 0.0940 0.8611 44.80

PIRenderer 21.38 0.1367 3.05 0.0511 0.0900 0.8173 47.45

Ours 23.54 0.0956 2.05 0.0216 0.0422 0.9165 36.64

Table 1: Comparison on same-identity reconstruction task.

reconstruction loss. Adversarial loss Ladv is inherited from
StyleGAN2. We also construct the 3D mesh Ŝ of the gener-
ated image Î . The mesh loss Lmesh is introduced to minimize
the vertices’ distance between Ŝ and the target mesh S, for-
mulated by Equation 2. The identity loss LID is to preserve
identity during motion transfer. The pretrained face recogni-
tion model CurricularFace [Huang et al., 2020] is adopted to
extract deep identity features from Is and Î .

The overall model objective for same-identity training data
is a combination of the above losses:

LSI = L1 + Lp + Ladv + Lmesh + LID. (13)

Cross-identity Data. We randomly sample two frames
from different videos. The reconstruction loss is not applica-
ble since there is no ground-truth. Ladv is still adopted since
it is helpful in producing realistic results. In addition, Lmesh

is used to encourage the generated image to have the same
expression and pose as the driving image. LID preserves the
identity information from the source image.

The overall model objective for cross-identity training data
is defined as follows:

LCI = Ladv + Lmesh + LID. (14)

In a mini-batch, the ratio of same-identity data and cross-
identity data is empirically set to 1 : 1.

4 Experiment
4.1 Datasets and Implementation
Training Datasets. We utilize the VoxCeleb [Nagrani et
al., 2017] dataset, which consists of around 20K talking-
head videos, to train our HiFiHead network. The cropped
videos are then resized to 512×512. A total of 17, 927 train-
ing videos and 491 testing videos are obtained.
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Figure 5: Visual comparison of cross-identity motion transfer. Our HiFiHead is able to generate photo-realistic face details, as well as better
identity and more accurate eye movements, compared with other SOTA methods.
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Implementation Details. We re-train the D3DFR [Deng et
al., 2019b] to predict 3DMM and gaze coefficients. The
StyleGAN2 is pretrained on FFHQ [Karras et al., 2019]
dataset at resolution 512×512. We clarify that we use the pre-
trained weights of StyleGAN for faster convergence when
training HifiHead on VoxCeleb. However, similar result can
still be achieved just with more iterations if trained from
scratch. The spatial feature encoder contains 7 down-sample
convolutional layers. The learning rate is set to 0.001 for all
trainable parameters. The batch size is set to 32. It takes
around 2 days to train HifiHead with 8 Tesla V100 GPUs.

Evaluation Metrics. PSNR and LPIPS [Zhang et al., 2018]
are adopted to evaluate the reconstruction error. The motion
transfer accuracy is measured by Exp, Angle and Gaze, which
calculate the average Euclidean distances of expression, pose
and gaze coefficients between the generated and target im-
ages. Identity similarity (ID) is measured by the cosine dis-
tance in deep feature space. For fair comparison, another pop-
ular face recognition model ArcFace [Deng et al., 2019a] is
used to extract identity features. FID [Heusel et al., 2017] is
also reported to measure visual quality.

4.2 Talking-head Motion Transfer
We compare our model with three state-of-the-art methods,
including FOMM [Siarohin et al., 2019a], one-shot neu-
ral talking-head synthesis (NTHS) [Wang et al., 2021a] and
PIRenderer [Ren et al., 2021]. The official released models
of FOMM and PIRenderer are adopted in the experiments.
NTHS is re-implemented following the implementation de-
tails provided by the paper.

Same-identity Reconstruction. We first compare image
synthesis results where the source and driving images are of
the same person. The quantitative evaluation is shown in Ta-
ble 1. It can be seen that our HifiHead obtains comparable
PSNR to other competing methods, but achieves better results
on LPIPS and FID, which are better measures than PSNR for
the face image perceptual quality. HifiHead also obtains the
lowest Exp, Angle and Gaze scores, showing that our results
have more accurate head motions and eye movements. In ad-
dition, HifiHead also preserves better identity. Figure 4 shows
the qualitative comparisons. Our method can reproduce the
driving images more faithfully.

Cross-identity Motion Transfer. Cross-identity motion
transfer has a wider range of practical applications than same-
identity reconstruction. Besides Voxceleb, we randomly sam-
ple 1K images from the FFHQ [Karras et al., 2019] and
CelebaHQ [Karras et al., 2017] dataset as the source images
to compare the generalization capability with other meth-
ods. The quantitative results are presented in Table 2. Our
method achieves superior performance on all metrics for all
datasets. One possible explanation is that the competing
methods [Siarohin et al., 2019a; Wang et al., 2021a] describe
motions with person-specific sparse keypoints. The accuracy
is reduced when driven by cross-identity images. In compar-
ison, our generated results are conditioned on explicit well-
disentangled 3DMM coefficients and rendered 3D images,
which is less sensitive to driving subjects. Furthermore, our
method manages to hallucinate realistic face details thanks to
the carefully designed generative block and fine-tuning strate-
gies. The qualitative comparisons are shown in Figure 5.
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Method
VoxCeleb CelebaHQ FFHQ

Exp↓ Angle↓ Gaze↓ ID↑ FID↓ Exp↓ Angle↓ Gaze↓ ID↑ FID↓ Exp↓ Angle↓ Gaze↓ ID↑ FID↓

FOMM 6.92 0.0744 0.0981 0.5443 76.42 6.72 0.0743 0.1001 0.5351 83.73 7.23 0.0810 0.0964 0.5078 107.00
NTHS 7.36 0.0873 0.1436 0.5737 70.40 7.42 0.0878 0.1322 0.5912 74.88 8.01 0.0963 0.1322 0.5425 110.54

PIRenderer 6.56 0.0793 0.1131 0.5046 67.51 6.78 0.0828 0.1122 0.5553 78.78 7.46 0.0900 0.1155 0.5019 106.06

Ours 5.08 0.0699 0.0786 0.7946 56.70 5.51 0.0691 0.0845 0.7859 47.87 6.05 0.0764 0.0834 0.7578 69.64

Table 2: Quantitative comparison on cross-identity motion transfer task.

Method Exp↓ Angle↓ ID↑ FID↓

PIRenderer 5.42 0.0651 0.7272 56.53

Ours 4.28 0.0473 0.8645 43.25

Table 3: Comparison on intuitive editing with 3D control.

Source Target 3D PIRender Ours

Figure 7: Intuitive editing with 3D control.

To further demonstrate the ability of HifiHead in preserv-
ing the identity information, we randomly sample 200 source
and driving pairs. Based on these pairs, the corresponding
identity similarity distribution is visualized in Figure 6, in
which HifiHead significantly outperforms SOTA NTHS with
98% samples achieving higher identity similarity.

4.3 Intuitive Editing with 3D Control
In this experiment, we intuitively modify the 3DMM repre-
sentations to generate images with different motions. Al-
though many methods have been proposed for face editing,
few of them are capable of intuitively changing face expres-
sions and poses. We compare to the state-of-the-art method
PIRenderer, which also achieves editing via a 3DMM.

We randomly select 100 source images and 10 target ex-
pressions and poses, which totally results in 1K editing im-
ages. We do not edit eye movements as PIRenderer does not
support such editing. Table 3 shows that our method achieves
better results. The qualitative comparisons are presented in
Figure 7. From the first row, we can see that our HifiHead can
generate realistic facial details, such as hair and eyelashes. In
the second row, PIRenderer can not retain the identity infor-
mation from the source image. In comparison, the identity is
well-maintained in our generated results.

4.4 Comparison with Dynamic NeRF
NeRF-based methods require video sequence as training data
for each specific person (e.g., Dynamic NeRF [Pumarola et

Src Drive D-NeRF Ours

Figure 8: Visual comparison with Dynamic-NeRF.

w/o flow w/o LID Ours

Figure 9: Ablation study on flow field and identity loss.

al., 2021] uses 5,000 images), while HifiHead drives talking
heads using only one source image and can be applied to any
person. Beside, Dynamic NeRF can not model eye blinks and
eye movements, as claimed in their paper. Figure 8 illustrates
the comparison with the case reported in Dynamic NeRF.

4.5 Ablation Studies
To evaluate the effectiveness of our proposed HifiHead, we
conduct ablation study on two variants of our method. Vari-
ant A (w/o flow) represents removing the flow field prediction
branch. The source features Fsrc are directly concatenated to
the features in the GAN block. Variant B (w/o LID) denotes
removing identity loss during training. Figure 9 presents the
visual comparison between the variants and our full model.
Without explicit dense flow prediction, model A can not gen-
erate accurate motions. On the other hand, Model B can
not preserve the identity effectively. In comparison, our full
model can generate much better results.

5 Conclusion
In this paper, we present a high fidelity neural head synthe-
sis framework, termed HifiHead, to produce photo-realistic
results with high quality appearance of the source image
and accurate target motion of the driving image. Exten-
sive experiments show that our method can not only achieve
better same-identity reconstruction, but also generalize well
to cross-identity motion transfer, significantly outperforming
state-of-the-art competitors. In addition, benefiting from se-
mantically meaningful 3DMM parameters, our proposed Hi-
fiHead allows intuitive control and editing for users.
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